Pellet-fueled I-mode plasmas in ASDEX Upgrade

نویسندگان

چکیده

Abstract This letter reports on the efforts carried out at ASDEX Upgrade tokamak to integrate I-mode plasmas with pellet fueling and increase Greenwald fraction f GW , two important requirements for any DEMO operational scenario. For first time, stationary have been achieved core has increased up 0.8. Larger were not due technical constraints rather than a physics-based limit. Pellet-fueled exhibit enhanced edge density, while temperature are reduced. Nonetheless, normalized gradients remain I-mode-like, namely shallow density steep temperature. The energy confinement time is found obey distinct dependencies: < 0.4 it rises increasing > plateaus or even decreases pellet-fueled plasmas. Similarities Ohmic L-mode dependency discussed.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A compact lithium pellet injector for tokamak pedestal studies in ASDEX Upgrade.

Experiments have been performed at ASDEX Upgrade, aiming to investigate the impact of lithium in an all-metal-wall tokamak and attempting to enhance the pedestal operational space. For this purpose, a lithium pellet injector has been developed, capable of injecting pellets carrying a particle content ranging from 1.82 × 10(19) atoms (0.21 mg) to 1.64 × 10(20) atoms (1.89 mg). The maximum repeti...

متن کامل

Pedestal Studies at ASDEX Upgrade

The ASDEX Upgrade suite of edge pedestal diagnostics has been significantly improved. A new edge ion temperature and toroidal velocity diagnostic as well as a novel diagnostic for radial electric fields (Er) have been added. The application of integrated data analysis in a probabilistic framework contributes substantially to the quality of Er and electron density profiles. The equilibrium recon...

متن کامل

Fast Ion Loss Diagnostic in ASDEX Upgrade

The confinement of fast particles is of crucial importance for next step fusion devices like ITER. Since fast ion losses might reduce the core heating and, in addition, cause untolerable first wall load, it is important to understand and possibly avoid them. Here, an integrated approach is presented for the analysis of neutral beam injection related fast ion losses in ASDEX Upgrade. It consists...

متن کامل

Ion orbit loss current in ASDEX Upgrade

The orbit loss current is calculated for the ASDEX Upgrade geometry using the 5D (3D in configuration space and 2D in velocity space) Monte Carlo code ASCOT. The balance between the obtained current and the analytical estimate of the return current shows an L–H transition for the normalized collision frequency ν∗i ≈ 1 as expected from analytic theory. The transition in ASDEX Upgrade, however, o...

متن کامل

The compact neutron spectrometer at ASDEX Upgrade.

The first neutron spectrometer of ASDEX Upgrade (AUG) was installed in November 2008. It is a compact neutron spectrometer (CNS) based on a BC501A liquid scintillating detector, which can simultaneously measure 2.45-MeV and 14-MeV neutrons emitted from deuterium (D) plasmas and γ radiation. The scintillating detector is coupled to a digital pulse shape discrimination data acquisition (DPSD) sys...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nuclear Fusion

سال: 2023

ISSN: ['0029-5515', '1741-4326']

DOI: https://doi.org/10.1088/1741-4326/acde8c